

Enabling the Nervous System to Repair Itself

CORPORATE PRESENTATION

Financial Disclosure Statement

Not an offer or solicitation: This document is provided for general information purposes only and does not constitute an offer to sell or a solicitation of an offer to buy any security in any jurisdiction. The contents of this document have not been approved or disapproved by any securities commission or regulatory authority in Canada, the U.S. or any other jurisdiction. It is neither sufficient for, nor intended to be used in connection with, any decision relating to the purchase or sale of any existing or future securities. Investors considering the purchase or sale of any securities should consult with independent professional advisors.

Forward-looking statements: Certain statements in this document about the Company's current and future plans, expectations and intentions, results, levels of activity, performance, goals or achievements, or any other future events or developments constitute forward-looking statements, including, without limitation, statements regarding the advancement of NVG-291 in clinical development, the timing of human trials and regulatory approval, the potential efficacy of the Company's products and technology, and the potential to identify, evaluate and develop other drug candidates. The words "may", "will", "would", "should", "could", "expect", "plan", "intend", "trend", "indication", "anticipate", "believe", "estimate", "predict", "likely" or "potential", or the negative or other variations of these words or other comparable words or phrases, are intended to identify forward-looking statements. Forward-looking statements are based on estimates and assumptions made by the Company in light of management's experience and perception of historical trends, current conditions and expected future developments, as well as other factors that the Company believes are appropriate and reasonable in the circumstances. Many factors could cause the Company's actual results, level of activity, performance or achievements or future events or developments to differ materially from those expressed or implied by the forward-looking statements, including those described in the "Risk Factors" section of the Company's Annual Information Form, Prospectus Supplement, financial statements and Management Discussion and Analysis which can be found on SEDAR.com. All clinical development plans are subject to additional funding. Readers should not place undue reliance on forward-looking statements made in this document. Furthermore, unless otherwise stated, the forward-looking statements contained in this document are made as of the date of this document, and the Company has no intention and undertakes no obligation to update or revise any forward-looking statements, whether as a result of new information, future events or otherwise, except as required by applicable law. The forward-looking statements contained in this document are expressly qualified by this cautionary statement.

NervGen's Clinical Trials are Led by Experienced Drug Developers

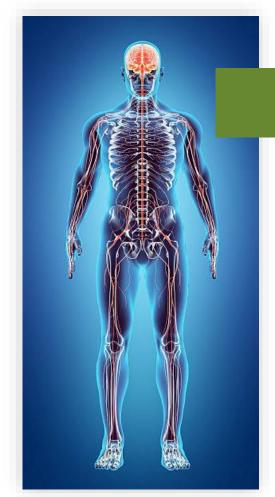
Paul Brennan President & CEO

- 30+years of biotech and pharma commercial and development experience
- Participated in the commercial or regulatory development of >10 products now EMA or FDA approved including budesonide (Pulmicort), esomeprazole (Nexium), budesonide/formoterol (Symbicort) and plerixafor (Mozobil)
- \$3+ billion in M&A, licensing and corporate restructuring transactions

Dr. Dan Mikol, MD, PhD Chief Medical Officer

- 25+ years pharma experience and as practicing neurologist conducting clinical research
- Joined NervGen from Amgen where he was Executive Director and Global Therapeutic Development Head, Neurology and Nephrology
- Participated in development and/or commercialization of natalizumab (Tysabri), fingolomod (Gilenya), cladribine (Mavenclad), interferon-ß-1a and erenumab (Aimovig)

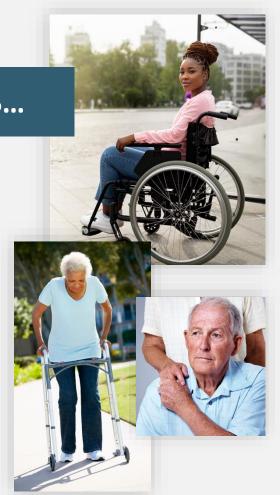
NVG-291: A Pipeline in a Product


STAGE OF DEVELOPMENT

INDICATION	Phase 1	Phase 1b/2 Initiation	Phase 1b/2 Readout	ESTIMATED COST	MARKET OPPORTUNITY
Alzheimer's Disease		Q4 2022	2024	\$20 M	 ~6,000,000 patients in the US US Market potential of over \$300 billion Substantial pharma deal dynamics
Spinal Cord Injury		Q4 2022	2023	\$10 M	 ~18,000 new patients per year in the US ~300,000 chronic patients Lifetime costs range from \$1 to >\$5 million
Multiple Sclerosis		Q1 2023	2024	\$20 M	 ~900,000 patients in the US US Market potential of over \$30 billion Currently there are multiple blockbusters

Proof of concept readouts for all three indications expected in 18-24 months

Revolutionizing the Treatment of Nervous System Damage



Everyone **KNOWS...**

The nervous system is a **complex system** that controls thought, movement, senses, etc.

Everyone **BELIEVES...**

The nervous system cannot repair itself

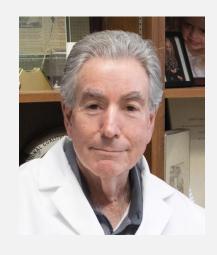
NVG-291 – First-in-Class *Neuroreparative* Drug


Representative of Placebo Group

(Back Legs and Tail Dragging)

Representative of NVG-291 Group

(Back Legs and Tail Active)



Remarkable and robust repair across multiple models

NervGen's Technology Was Invented by Dr. Jerry Silver Known in the Spinal Cord Injury Field as the "Oracle"

Jerry Silver, PhD

Professor and Researcher,

Adjunct Professor,

Dr. Silver's Spinal Cord Research

- Discovered why the nervous system does not repair itself
- Identified the surprising molecules responsible

Dr. Silver Has Received Numerous Prestigious Awards Including

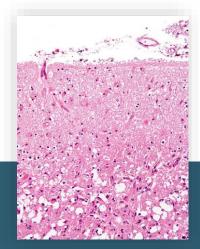
- Ameritec Prize
- Christopher Reeve-Joan Irvine Research Medal
- Jacob Javits Neuroscience Investigator Award

Dr. Silver's research revolutionized the understanding of the nervous system

STRONG IP PORTFOLIO

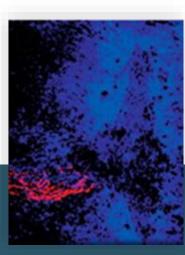
NervGen licensed the technology from Case Western and

owns global rights for all indications


Intellectual property protection on NVG-291 until 2037

The Evolution of Our Proprietary Science

Pre 1990


It was demonstrated that **glial scars** form at the site of injury to the nervous system and that scars in the brain cause neurons to be dysfunctional. Scars were later identified as the primary impediment of recovery

Micrograph of a glial scar

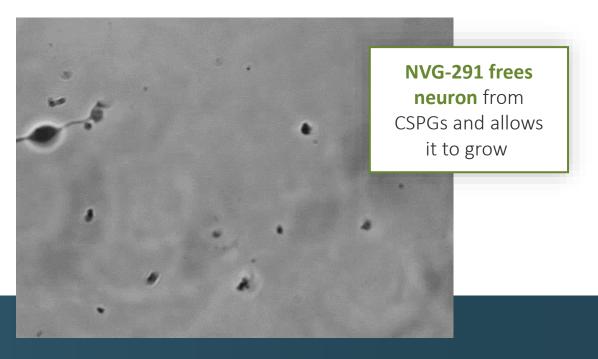
1990s

Dr. Silver identified a class of molecules called **CSPGs**, present in scars in the brain and spinal cord, that stop the body's natural repair mechanisms

Spinal cord nerve (red) trapped in the scar by CSPGs (blue)¹

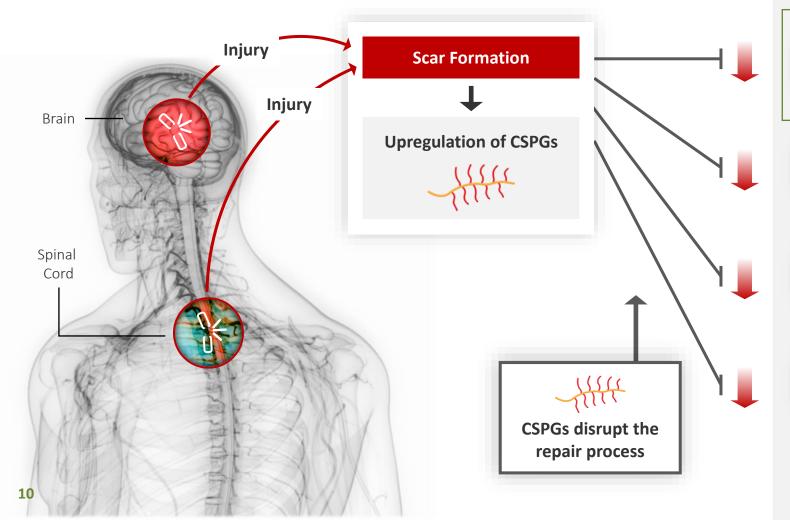
2009

Dr. Silver and collaborators from Harvard co-discovered that CSPGs bind with a receptor (PTPσ) present in the brain and spinal cord and that this interaction stops cells from repairing damage


2015

Dr. Silver's team then identified **NVG-291**, a drug that targets the interaction between CSPGs and PTP σ and allows the nervous system to repair damage

NVG-291 Allows Neurons to Grow in the Scar


NVG-291, a 35 amino acid peptide, produced dramatic recovery in a spinal cord injury animal study: the results published in Nature¹ are now cited in over 327 publications

> Administered systemically by a daily subcutaneous injection

Includes a transporter that facilitates crossing the blood brain barrier

The Body's Powerful Innate Repair Mechanisms Disrupted by CSPGs

Repair Mechanisms:

Plasticity

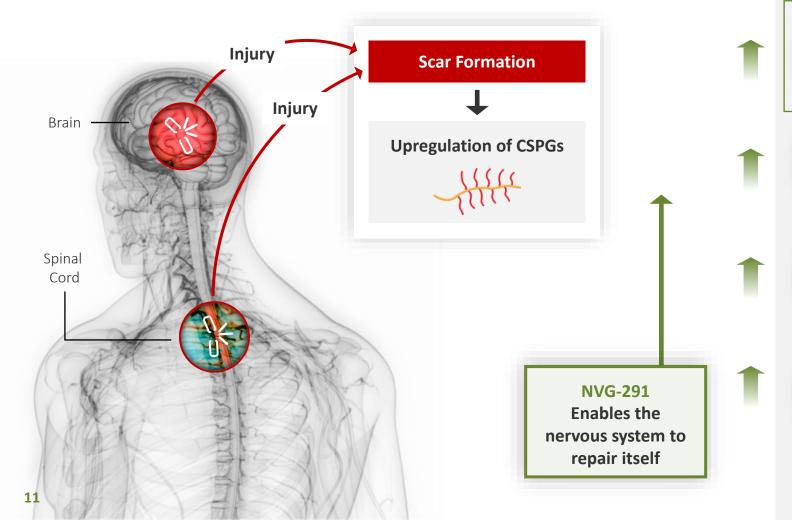
The creation of new neuronal connections and rewiring of existing ones

Axonal Regeneration

The ability of a severed axon to reestablish connectivity with other neurons

Remyelination

The process of repairing damaged myelin – the fatty substance that protects axons and enables fast electrochemical transmission


Others

Stem cell preservation/migration Autophagy Microglial shifting

NVG-291

Takes the Brakes off Natural Repair Mechanisms

Repair Mechanisms:

Plasticity

The creation of new neuronal connections and rewiring of existing ones

Axonal Regeneration

The ability of a severed axon to reestablish connectivity with other neurons

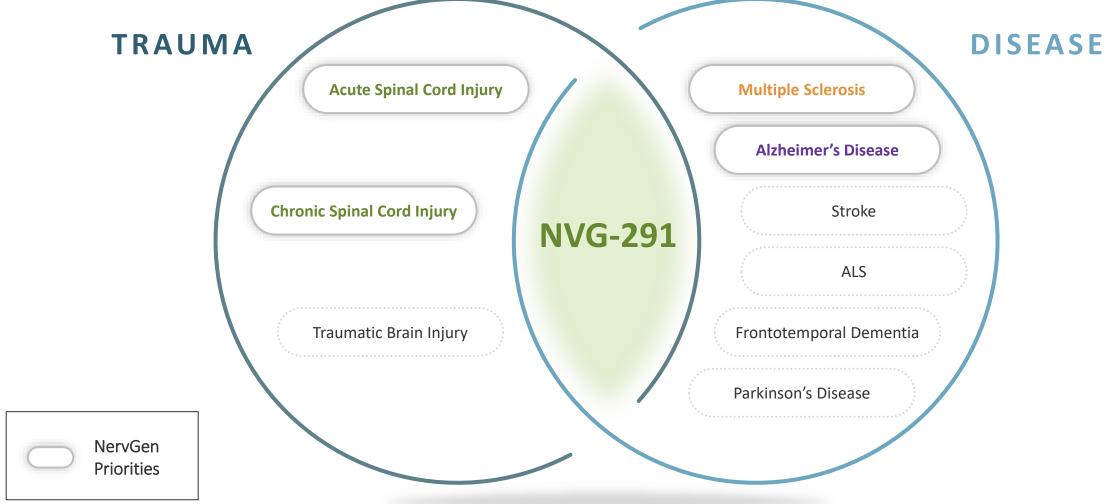
Remyelination

The process of repairing damaged myelin – the fatty substance that protects axons and enables fast electrochemical transmission

Others

Stem cell preservation/migration Autophagy Microglial shifting

NVG-291 Broadly Restores Function


NVG-291 Has Demonstrated Dramatic Repair

in multiple animal models of neurological injury/disease, as documented in 15+ peer-reviewed papers

ACUTE SPINAL CORD INJURY	PERIPHERAL NERVE INJURY	MULTIPLE SCLEROSIS	OPTIC NEURITIS	STROKE
MotorSensoryBladder	MotorSensory	• Motor	• Visual	MotorSensoryCognition (object recognition)
 Lang, B.T. et al., Nature, 518, 404–408. (2015). Rink, S. et al., Experimental Neurology, 309, 148–159. (2018). Ham, T.R. et al., Ann Biomed Eng, 47, 744–753. (2019). Ham, T.R. et al., Materials Science and Engineering: 	 Li, H. et al., Scientific Reports, 5, 1–14. (2015). Yao, M. et al., Neuropharmacology, 144, 208–218. (2019). 	1. Luo, F. et al., Nature Communications, 9, 1–16. (2018).	1. Niknam, P. et al., Molecular and Cellular Neuroscience, 99, 103391. (2019).	1. Luo et al., Cell Reports Volume 40, Issue 4, 111137, 2022
C, 110, 110656. (2020).				♦NervGen

NVG-291: Potential to Treat All Types of Nervous System Damage

NVG-291 - Phase 1 Clinical Trial in Progress

Single Ascending Dose (SAD) - COMPLETED

- NVG-291 was well tolerated at a high dose
 - 170% higher than the equivalent highest dose in preclinical efficacy studies
 - >100x higher than the lowest efficacious dose in studies
- NVG-291 was rapidly distributed in the blood
- The calculated half-life was longer in humans than animals

Multiple Ascending Dose (MAD) - IN PROGRESS

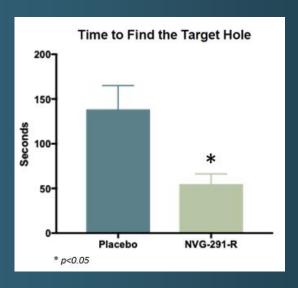
- Subjects are dosed once a day for 14 days
- Currently conducting the final cohort
- Dose in second dose cohort was well tolerated and 80% higher than the equivalent highest dose seen in preclinical efficacy studies

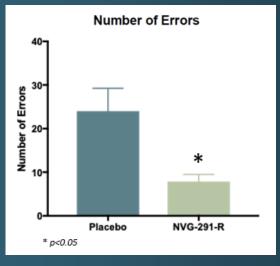
Our Phase 1 trial establishes the dose and safety profile necessary for starting all three of our Phase 1b/2 trials

Alzheimer's Disease

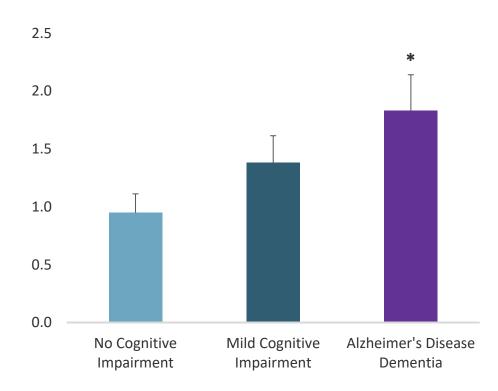
No FDA Approved Drug that Results in Sustained Improvement in Cognitive Function

- Symptomatic treatments to improve cognition in Alzheimer's disease are unsatisfactory
- A disease—modifying therapy approved in 2021 has questionable benefit in slowing cognitive decline
- NervGen's goal is to repair damage and improve cognitive function


NVG-291-R – Improves Memory and Spatial Learning


STROKE MODEL

Significant improvement in cognitive function when treated 24 hours - and even *7 days*



Barnes Maze Test treatment beginning 7 days post stroke

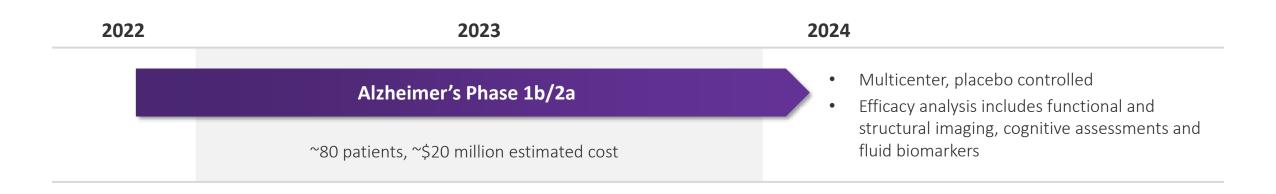
NVG-291 Pathway to Treat Alzheimer's Disease

CSPG ACCUMULATION IN AD PATIENT BRAINS¹

(CSPGs) Brevican/GAPDH

Preclinical studies have demonstrated that breaking down CSPGs improves Alzheimer's symptoms^{2,3}

Removing PTPo improves cognitive function in Alzheimer's models⁴


NVG-291's multiple modes of action, **plasticity**, **axonal regeneration and remyelination** have the potential to benefit patients suffering from Alzheimer's

^{*} p<0.05 compared to NCI

NervGen

^{1.} Howell, M.D. et al., Acta Neuropathol Commun, 3, 54. (2015). ² Yang et al., Experimental Neurology (2015).

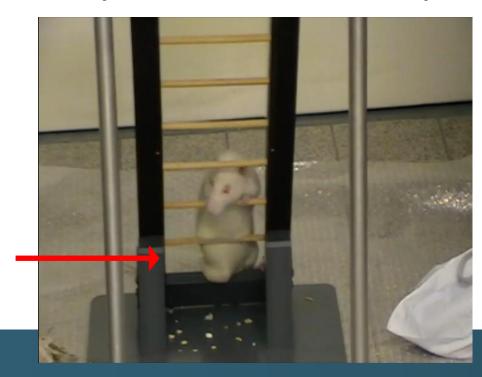
NVG-291 Safety/Efficacy Studies in Alzheimer's Disease Patients

World-class Advisory Board with experts in research, clinical design, cognitive assessments and biomarkers

Jeffrey Cummings, MD, ScD University of Nevada	Originator, Neuropsychiatric Inventory (NPI)
Martin Farlow, MD Indiana University School of Medicine	Led/contributed to >230 clinical trials; authored 493 peer reviewed research papers and 509 abstracts
Bruce Lamb, PhD Indiana University School of Medicine	World-expert on biological underpinnings of Alzheimer's disease and related dementia
George Perry, PhD University of Texas, San Antonio	Current and founding Editor-in-Chief of the Journal of Alzheimer's Disease

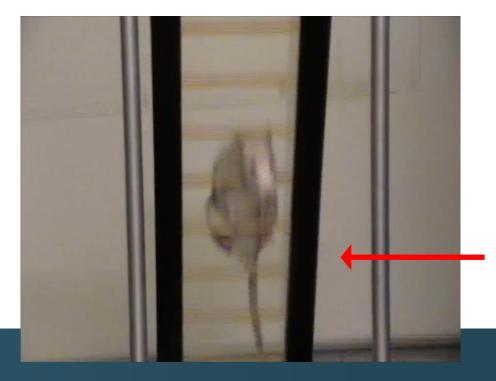
Reisa Sperling, MD Harvard Medical School; Massachusetts General Hospital	Led NIA-Alzheimer's Assoc. guideline development group; Serves on National Institute on Aging Advisory Council
Michael Weiner, MD University of California, San Francisco	Leader in development of MRI and PET for investigating and diagnosing neurodegenerative diseases
Henrik Zetterberg, MD, PhD University of Gothenburg, University College London	World expert in blood-based biomarkers in neurological disorder

Spinal Cord Injury


No FDA Approved Drug that Improves Function

NervGen's goal is to improve motor, bladder/bowel/sexual and/or sensory function

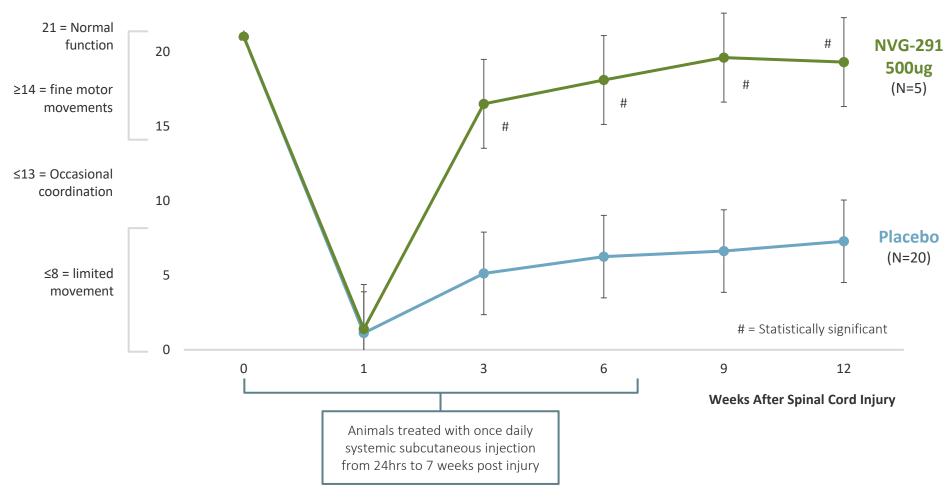
NVG-291 – Dramatically Repairs Spinal Cord Injury


SEVERE SPINAL CORD INJURY MODEL

Representative of Placebo Group

Hind legs are immobile

Representative of NVG-291 Group



Significant motor recovery: consistent coordination, toe clearance, tail held high consistently

Spinal Cord Injury – NVG-291 Promotes Functional Recovery

BBB Scale = Standard measure of mobility

UNPRECEDENTED RESULTS

Extremely high response rate 50%

Almost **complete recovery** in
responding animals

NVG-291 Improves Bladder Function

BLADDER DOSE RESPONSE Void Frequency 1.5 **100%** of animals in the two highest dose groups had improved bladder 1.0 Responders control function (2x SD of vehicle mean) NVG-291 treatment resulted 0.5 in a dose dependent improvement in bladder function 0.0 Vehicle $3.7 \mu g$ 5.5µg 11µg 22µg 33μ 44µg

Bladder function is a key quality of life measure in the paralyzed population

NVG-291 Safety/Efficacy Studies in Spinal Cord Injury Patients

2022 2023 2024

Spinal Cord Injury Phase 1b/2a

~16 patients per arm, minimum 32 patients ~\$10 million estimated cost

- Single center, placebo controlled
- Efficacy analysis includes electrophysiology, clinical assessments of upper and lower extremity function

World-class Advisory Board with experts in research, clinical design, functional assessments and biomarkers

James Guest MD, PhD, FACS University of Miami	World renowned surgeon/scientist; global expertise in clinical trial methodology
Linda Jones, PT, PhD Thomas Jefferson University	Expert consultant to pharma, universities, and non-profit organizations
Steven Kirshblum MD Rutgers New Jersey Medical	Nationally recognized expert; Spinal Cord Medicine textbook editor

Brian Kwon	World renowned surgeon/scientist;
MD, PhD, FRCSC	authored >240 scientific publications, >35
University of British Columbia	textbook chapters
Daniel Lammertse, MD University of Colorado School of Medicine	Former Director and President of the American Spinal Injury Association

Multiple Sclerosis Repair

No FDA Approved Drug that Improves Function

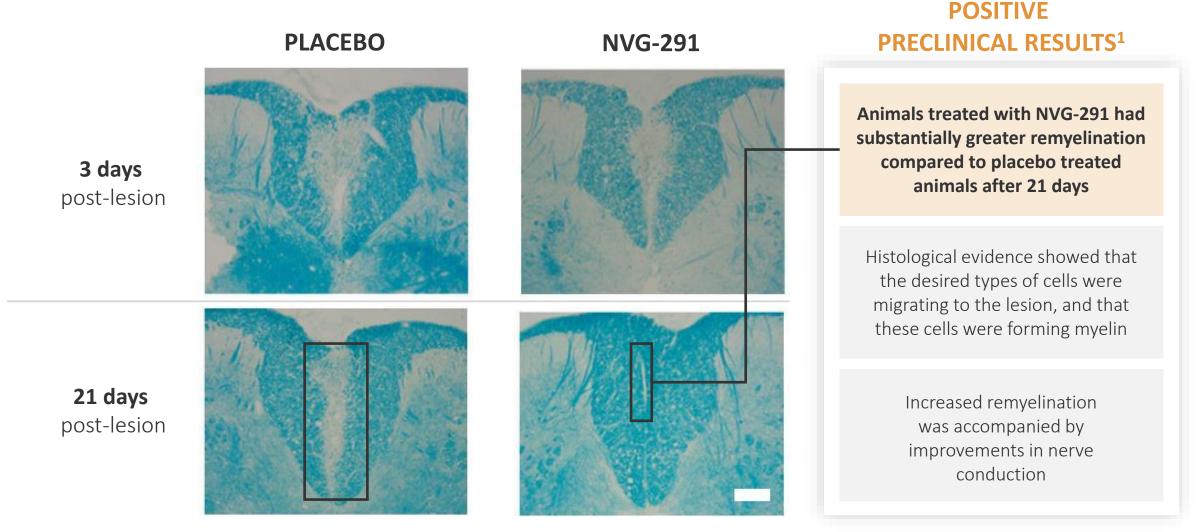
- MS is an autoimmune disease where the immune system attacks myelin in the central nervous system, and over time this results in increasing disability
- Approved disease-modifying drugs modulate the immune system, which can reduce relapses and slow disability progression, but none repair damage
- NervGen's goal is to repair/remyelinate the damage from MS, thereby improving function

NVG-291 Restores Motor Function in Multiple Sclerosis

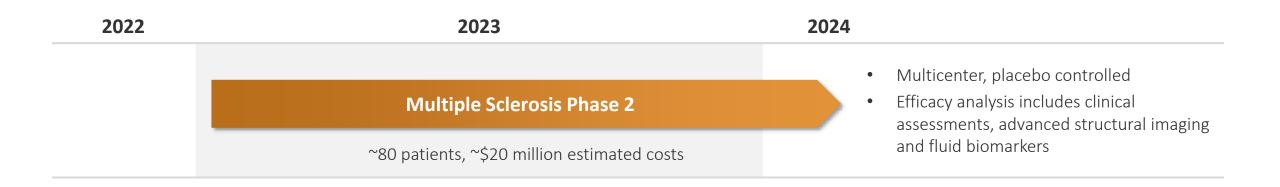
Representative of Placebo Group

Score never improves from 3.5

Representative of NVG-291 Group


Score improves to 0.5 in 20 days

NVG-291 restored motor function in MS model¹, even when administered after symptoms were fully developed


NVG-291 Remyelinates in Multiple Sclerosis

NVG-291 Safety/Efficacy Studies in Multiple Sclerosis Patients

World-class Advisory Board with experts in MS research, clinical design, and functional assessments

Jack Antel, MD McGill University	Ex-Pres., Americas Committee for Treatment and Research in MS; Ex- Pres., International Soc. of Neuroimmunology
Jeremy Chataway, MD University College London	Advanced Clinical trial design expert in MS
Jeffrey Cohen, MD Cleveland Clinic Lerner College of Medicine	Ex-ACTRIMS President

Robert Naismith, MD Washington University	Expert in clinical trial design and clinical outcomes measures
Anneke van der Walt, MD, PhD Monash University	Led several international studies on digital biomarkers in MS

Share and Capital Structure

Exchange/Market: Ticker	TSX: NGEN.V	OTCQX: NGENF	
Recent Share Price (July 18, 2022)	CA \$1.99	US \$1.52	
Shares Outstanding	58.5 million		
Fully Diluted	79.5 million (~7.2 million options, ~13.8 million warrants)		
Insider Ownership	25.6%		
~Cash & Cash Equivalents (March 31, 2022 + July 2022 PP)	CA \$32.1 million	US \$25.5 million	

Upcoming Value Drivers

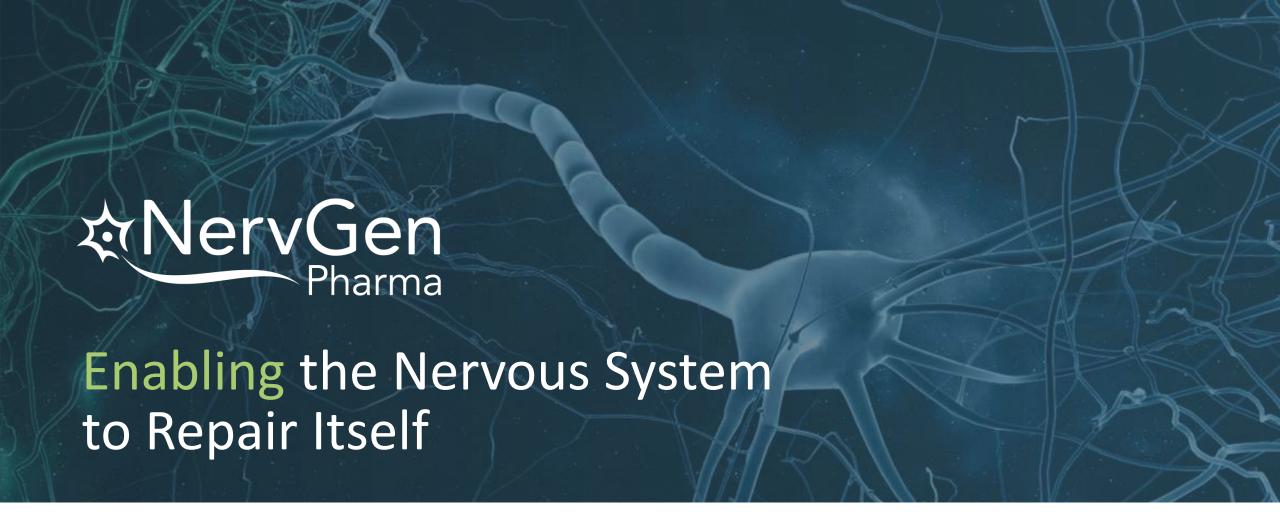
ADVANCED CLINICAL TRIAL PROGRAM

	PHASE	INITIATION	READOUT
Alzheimer's Disease	1b/2a	Q4 2022	2024
Spinal Cord Injury	1b/2a	Q4 2022	2023
Multiple Sclerosis	2	Q1 2023	2024

- Phase 1 study topline MAD data (2022)
- Preclinical study results in stroke, chronic spinal cord injury and Alzheimer's disease models which could transform treatment paradigms
- Awarding of privately funded and US Department of Defense sponsored grants (2022)
- Uplisting to Nasdaq (2022)

Investment Highlights

NVG-291 has the potential to **redefine treatment paradigms** for neurological disorders


Improvement demonstrated across 6 different animal models in fine and gross motor control, sensory function, autonomic functions, visual acuity, memory & learning, in many cases unprecedented

Pipeline addresses **significant unmet medical needs** in spinal cord injury, multiple sclerosis and Alzheimer's disease

Pipeline addresses very attractive commercial opportunities

Experienced management team, board & scientific advisors

