

Enabling the Nervous System to Repair Itself

CORPORATE PRESENTATION

November 15, 2022

Financial Disclosure Statement

Not an offer or solicitation: This document is provided for general information purposes only and does not constitute an offer to sell or a solicitation of an offer to buy any security in any jurisdiction. The contents of this document have not been approved or disapproved by any securities commission or regulatory authority in Canada, the U.S. or any other jurisdiction. It is neither sufficient for, nor intended to be used in connection with, any decision relating to the purchase or sale of any existing or future securities. Investors considering the purchase or sale of any securities should consult with independent professional advisors.

Forward-looking statements: Certain statements in this document about the Company's current and future plans, expectations and intentions, results, levels of activity, performance, goals or achievements, or any other future events or developments constitute forward-looking statements, including, without limitation, statements regarding the advancement of NVG-291 in clinical development, the timing of human trials and regulatory approval, the potential efficacy of the Company's products and technology, and the potential to identify, evaluate and develop other drug candidates. The words "may", "will", "would", "should", "could", "expect", "plan", "intend", "trend", "indication", "anticipate", "believe", "estimate", "predict", "likely" or "potential", or the negative or other variations of these words or other comparable words or phrases, are intended to identify forward-looking statements. Forward-looking statements are based on estimates and assumptions made by the Company in light of management's experience and perception of historical trends, current conditions and expected future developments, as well as other factors that the Company believes are appropriate and reasonable in the circumstances. Many factors could cause the Company's actual results, level of activity, performance or achievements or future events or developments to differ materially from those expressed or implied by the forward-looking statements, including those described in the "Risk Factors" section of the Company's Annual Information Form, Short Form Base Shelf Prospectus, financial statements and Management Discussion and Analysis which can be found on SEDAR.com. All clinical development plans are subject to additional funding. Readers should not place undue reliance on forward-looking statements made in this document. Furthermore, unless otherwise stated, the forward-looking statements contained in this document are made as of the date of this document, and the Company has no intention and undertakes no obligation to update or revise any forward-looking statements, whether as a result of new information, future events or otherwise, except as required by applicable law. The forward-looking statements contained in this document are expressly qualified by this cautionary statement.

NervGen's Clinical Trials are Led by Experienced Drug Developers

3

Bill Radvak Executive Chairman & Interim CEO

- Co-founder of NervGen
- Previously CEO and Director of multiple start-up companies
- Founder and CEO of Response Biomedical, a publicly listed medical device company, which he led from its inception to a 90-employee sales and manufacturing company

Adam Rogers, MD Interim President & Board Member

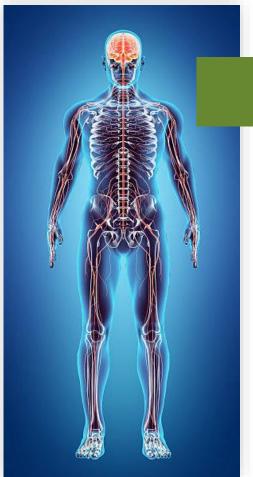
- Principal of Boston based PFP Biosciences Holdings and a board-certified ophthalmologist
- Co-founded Hemera Biosciences in 2010, a clinical stage gene therapy biotech company and assumed the role of CEO in 2017
- Oversaw all aspects of the company until the Hemera assets were acquired in December 2020 by Janssen Pharmaceuticals, a subsidiary of Johnson & Johnson

UNOVARTIS

Dan Mikol, MD, PhD Chief Medical Officer

- 25+ years pharma experience and as practicing neurologist conducting clinical research
- Joined NervGen from Amgen where he was Executive Director and Global Therapeutic Development Head, Neurology and Nephrology
- Participated in development and/or commercialization of natalizumab (Tysabri), fingolomod (Gilenya), cladribine (Mavenclad), interferon-ß-1a and erenumab (Aimovig)

Biogen


NVG-291: A Pipeline in a Product

	STAGE OF DE	VELOPMENT		
INDICATION	Phase 1	Next clinical trial	ESTIMATED COST	MARKET OPPORTUNITY
Spinal Cord Injury		1b/2a	\$10 M	 ~18,000 new patients per year in the US ~300,000 chronic patients Lifetime costs range from \$1 to >\$5 million
Alzheimer's Disease		1b/2a	\$20 M	 ~6,000,000 patients in the US US market potential of over \$300 billion Substantial pharma deal dynamics
Multiple Sclerosis		2	\$20 M	 ~900,000 patients in the US US market potential of over \$30 billion Currently there are multiple blockbusters

Proof of concept readouts for all three indications expected in 18-24 months from trial initiation

Revolutionizing the Treatment of **Nervous System Damage**

Everyone **KNOWS**...

The nervous system is a complex system that controls thought, movement, senses, etc.

Everyone **BELIEVES...**

The nervous system **cannot** repair itself

NVG-291 – First-in-Class *Neuroreparative* Drug

Representative of Placebo Group

(Back Legs and Tail Dragging)

Representative of NVG-291 Group

(Back Legs and Tail Active)

Remarkable and robust repair across multiple models

SEVERE SPINAL CORD INJURY MODEL

NervGen's Technology Was Invented by Dr. Jerry Silver Known in the Spinal Cord Injury Field as the "Oracle"

Jerry Silver, PhD Professor and Researcher,

Adjunct Professor,

Dr. Silver's Spinal Cord Research

- Discovered why the nervous system does not repair itself
- Identified the surprising molecules responsible

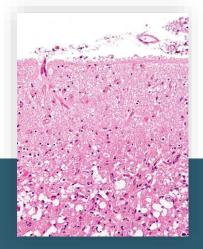
Dr. Silver Has Received Numerous Prestigious Awards Including

- Ameritec Prize
- Christopher Reeve-Joan Irvine Research Medal
- Jacob Javits Neuroscience Investigator Award

Dr. Silver's research revolutionized the understanding of the nervous system

STRONG IP PORTFOLIO

NervGen licensed the technology from Case Western and owns global rights for all indications


Intellectual property protection on NVG-291 until 2037

The Evolution of Our Proprietary Science

Pre 1990

It was demonstrated that **glial scars** form at the site of injury to the nervous system and that scars in the brain cause neurons to be dysfunctional. Scars were later identified as the primary impediment of recovery

Micrograph of a glial scar

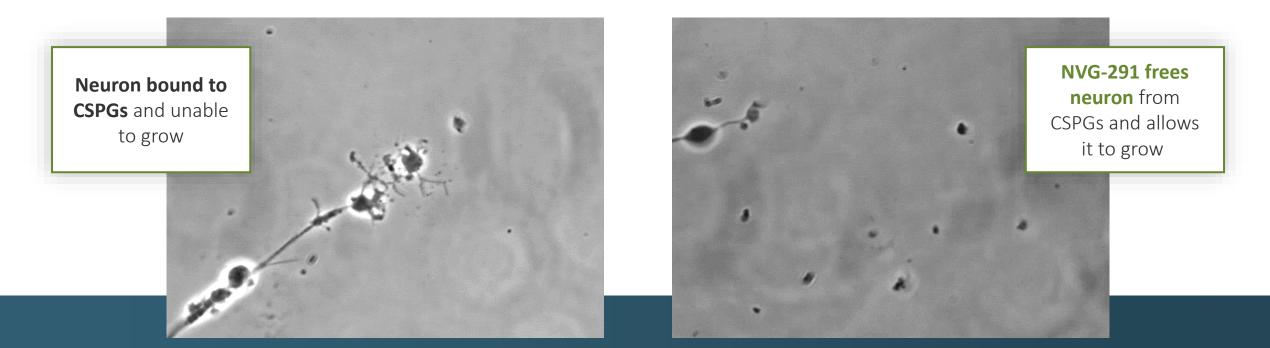
1990s

Dr. Silver identified a class of molecules called **CSPGs**, present in scars in the brain and spinal cord, that stop the body's natural repair mechanisms

Spinal cord nerve (red) trapped in the scar by CSPGs (blue)¹

2009

Dr. Silver and collaborators from Harvard co-discovered that CSPGs bind with a receptor (PTPo) present in the brain and spinal cord and that this interaction stops cells from repairing damage



2015

Dr. Silver's team then identified **NVG-291**, a drug that targets the interaction between CSPGs and PTPo and allows the nervous system to repair damage

NVG-291 Allows Neurons to Grow in the Scar

NVG-291, a 35 amino acid peptide, produced dramatic recovery in a spinal cord injury animal study: the results published in Nature¹ are now cited in over 327 publications

Administered systemically by a daily subcutaneous injection

Includes a transporter that facilitates crossing the blood brain barrier

The Body's Powerful Innate Repair Mechanisms Disrupted by CSPGs

Repair Mechanisms:

Plasticity

The creation of new neuronal connections and rewiring of existing ones

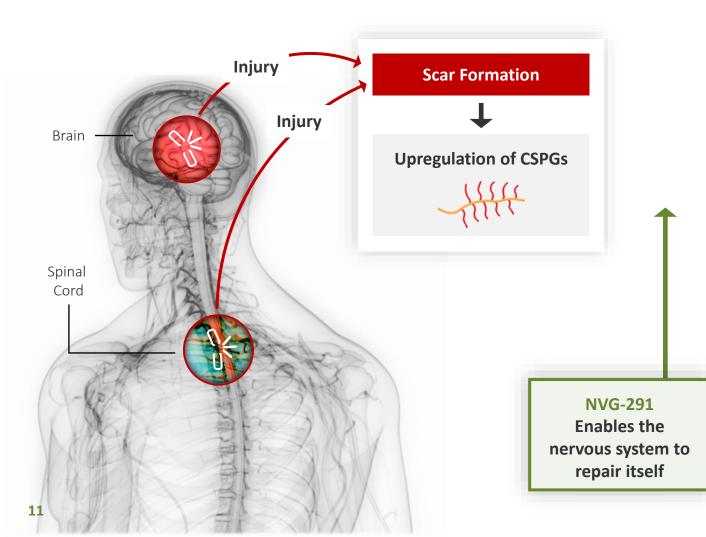
Axonal Regeneration

The ability of a severed axon to reestablish connectivity with other neurons

Remyelination

The process of repairing damaged myelin – the fatty substance that protects axons and enables fast electrochemical transmission

Others



Stem cell preservation/migration Autophagy Microglial shifting

NVG-291

Takes the Brakes off Natural Repair Mechanisms

Repair Mechanisms:

Plasticity

The creation of new neuronal connections and rewiring of existing ones

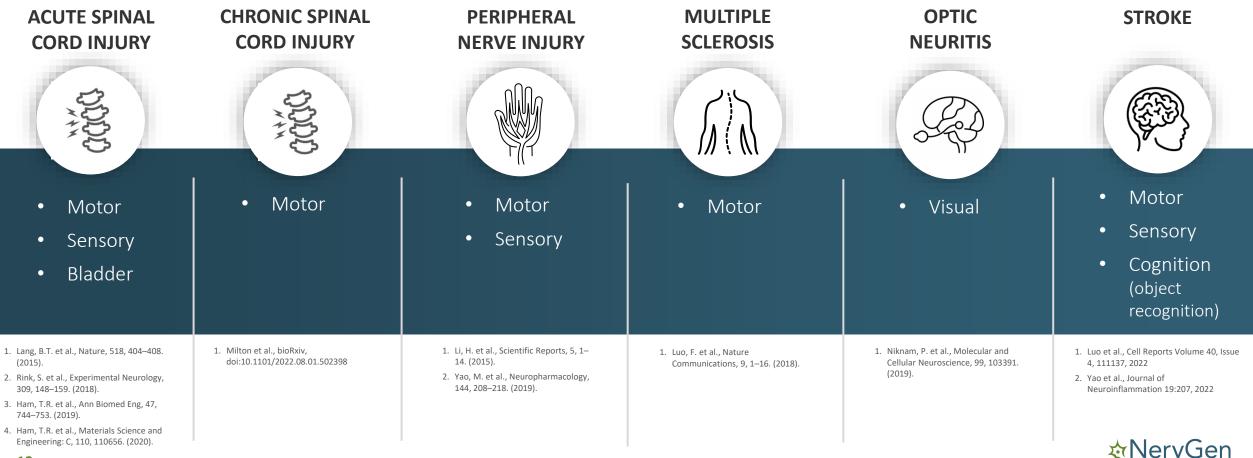
Axonal Regeneration

The ability of a severed axon to reestablish connectivity with other neurons

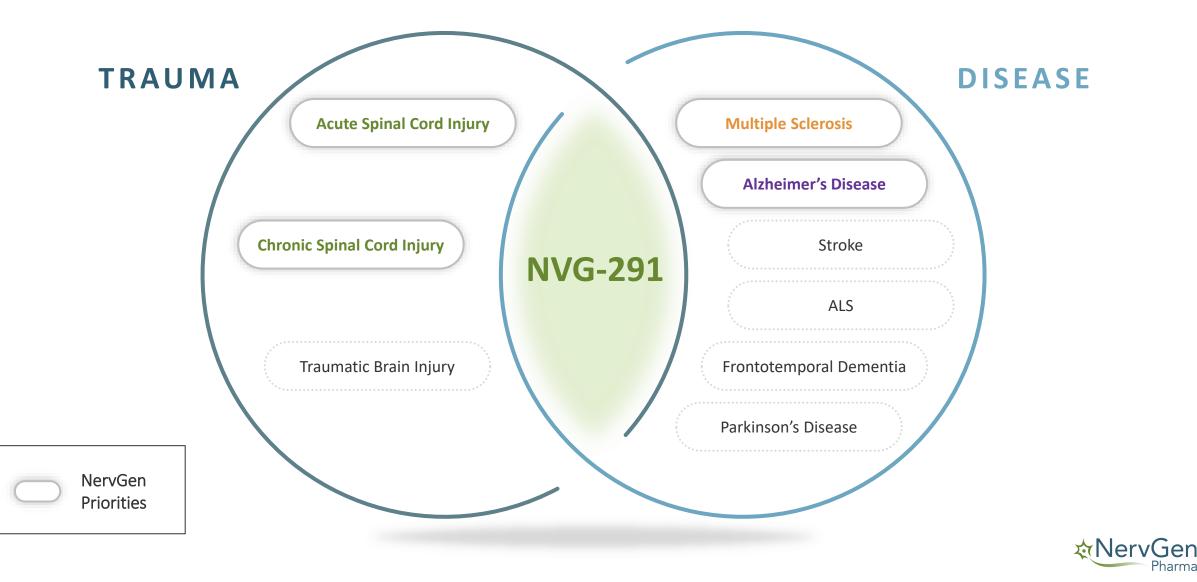
Remyelination

The process of repairing damaged myelin – the fatty substance that protects axons and enables fast electrochemical transmission

Others


Stem cell preservation/migration Autophagy Microglial shifting

NVG-291 Broadly Restores Function


NVG-291 Has Demonstrated Dramatic Repair

in multiple animal models of neurological injury/disease, as documented in 15+ peer-reviewed papers

Pharma

NVG-291: Potential to Treat All Types of Nervous System Damage

Pharma

NVG-291 - Phase 1 Clinical Trial in Progress

Postmenopausal females - COMPLETED

- NVG-291 was well tolerated at a high dose
 - 170% higher than the equivalent highest dose in preclinical efficacy studies
 - >100x higher than the lowest efficacious dose in studies

- NVG-291 was rapidly distributed in the blood
- The calculated half-life was longer in humans than animals

*Subjects were dosed once a day for 14 days

Our Phase 1 trial establishes the dose and safety profile necessary for starting our Phase 1b/2 trials

Spinal Cord Injury

No FDA Approved Drug that Improves Function

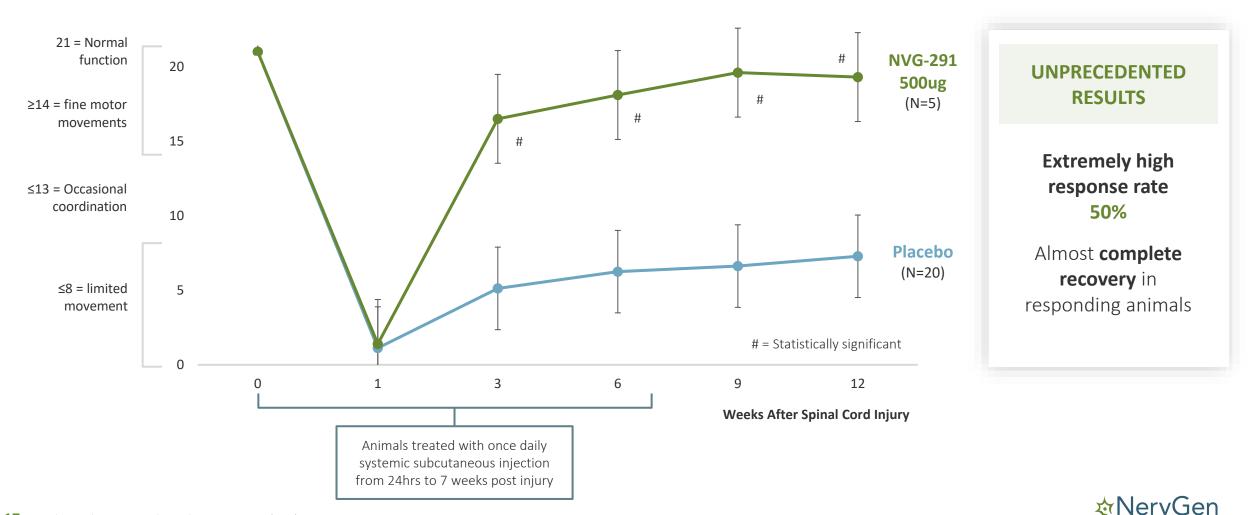
 NervGen's goal is to improve motor, bladder/bowel/sexual and/or sensory function

NVG-291 – Dramatically Repairs Spinal Cord Injury SEVERE SPINAL CORD INJURY MODEL

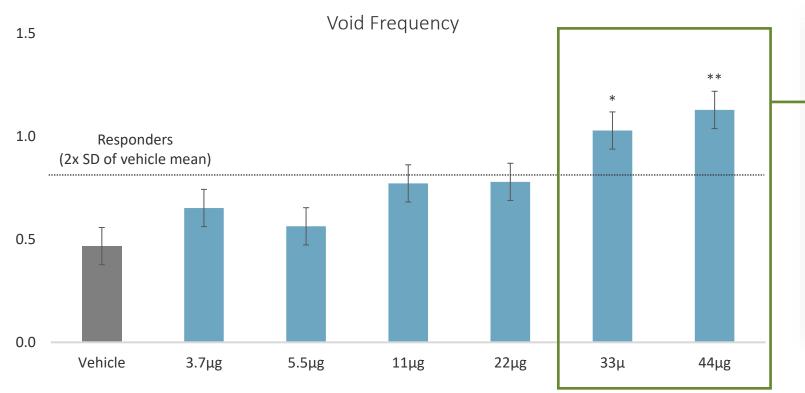
Representative of Placebo Group

Representative of NVG-291 Group

Hind legs are immobile


Significant motor recovery: consistent coordination, toe clearance, tail held high consistently

Spinal Cord Injury – NVG-291 Promotes Functional Recovery

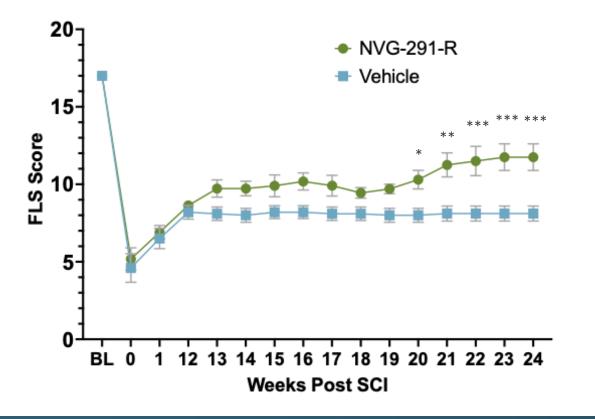

BBB Scale = Standard measure of mobility

Pharma

NVG-291 Improves Bladder Function

BLADDER DOSE RESPONSE

100% of animals in the two highest dose groups had improved bladder control function


NVG-291 treatment resulted in a dose dependent improvement in bladder function

Bladder function is a key quality of life measure in the paralyzed population

Chronic Spinal Cord Injury – NVG-291-R Promotes Functional Recovery

Forelimb Locomotor Scale Treatment beginning 3 months post spinal cord injury

Animals treated with once daily systemic injection starting 3 months post injury for 60 days

Animals treated with NVG-291-R show **significant improvements** in forelimb recovery at 24 weeks post injury

Significant functional improvements observed when NVG-291-R was administered 3 months after a spinal cord injury

NVG-291 Safety/Efficacy Studies in Spinal Cord Injury Patients

Spinal Cord Injury Phase 1b/2a

~20 patients per arm, minimum 40 patients ~\$10 million estimated cost

- Single center, placebo controlled
- 3 months treatment duration
- Efficacy analysis includes electrophysiology, clinical assessments of upper and lower extremity function

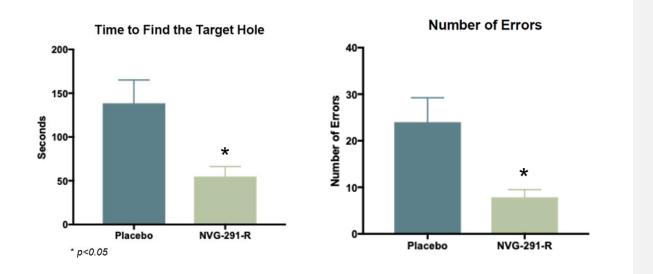
World-class Advisory Board with experts in research, clinical design, functional assessments and biomarkers

James Guest MD, PhD, FACS University of Miami	World renowned surgeon/scientist; global expertise in clinical trial methodology	Brian Kwon MD, PhD, FRCSC University of British Columbia	World renowned surgeon/scientist; authored >240 scientific publications, >3 textbook chapters
Linda Jones, PT, PhD Thomas Jefferson University	Expert consultant to pharma, universities, and non-profit organizations	Daniel Lammertse, MD University of Colorado School of Medicine	Former Director and President of the American Spinal Injury Association
Steven Kirshblum MD Rutgers New Jersey Medical	Nationally recognized expert; Spinal Cord Medicine textbook editor		

Alzheimer's Disease No FDA Approved Drug that Results in **Sustained Improvement in Cognitive Function**

- Symptomatic treatments to improve cognition in Alzheimer's disease are unsatisfactory
- A disease–modifying therapy approved in 2021 has questionable ۰ benefit in slowing cognitive decline
- NervGen's goal is to repair damage and improve cognitive function

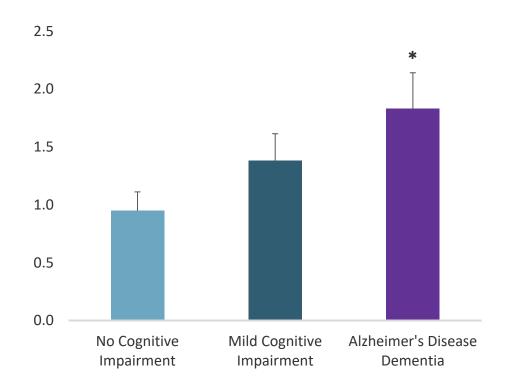
NVG-291-R – Improved Spatial Learning and Memory **STROKE MODEL**


Significant improvement in cognitive function when treated 24 hours - and even 7 days

Improved Spatial Learning and Memory

Barnes Maze Test Treatment beginning 7 days post stroke

Animals treated with NVG-291-R made **fewer errors** and identified the target hole in a **faster time** compared to placebo treated animals


Significant improvements observed when NVG-291-R was administered **up to 7 days after** an ischemic stroke

Improvements in spatial learning and memory may be relevant for other indications affecting cognition, such as Alzheimer's disease

NVG-291 Pathway to Treat Alzheimer's Disease

CSPG ACCUMULATION IN AD PATIENT BRAINS¹

(CSPGs) Brevican/GAPDH

Preclinical studies have demonstrated that breaking down CSPGs **improves Alzheimer's symptoms**^{2,3}

Removing PTPo **improves cognitive function** in Alzheimer's models⁴

NVG-291's multiple modes of action, **plasticity**, **axonal regeneration and remyelination** have the potential to benefit patients suffering from Alzheimer's

* p<0.05 compared to NCI

NVG-291 Safety/Efficacy Studies in Alzheimer's Disease Patients

World-class Advisory Board with experts in research, clinical design, cognitive assessments and biomarkers

Jeffrey Cummings, MD, ScD University of Nevada	Originator, Neuropsychiatric Inventory (NPI)	Reisa Sperling, MD Harvard Medical School; Massachusetts General Hospital	Led NIA-Alzheimer's Assoc. guideline development group; Serves on National Institute on Aging Advisory Council
Martin Farlow, MD Indiana University School of Medicine	Led/contributed to >230 clinical trials; authored 493 peer reviewed research papers and 509 abstracts	Michael Weiner, MD University of California, San Francisco	Leader in development of MRI and PET for investigating and diagnosing neurodegenerative diseases
Bruce Lamb, PhD Indiana University School of Medicine	World-expert on biological underpinnings of Alzheimer's disease and related dementia	Henrik Zetterberg, MD, PhD University of Gothenburg, University College London	World expert in blood-based biomarkers in neurological disorder
George Perry, PhD University of Texas, San Antonio	Current and founding Editor-in-Chief of the Journal of Alzheimer's Disease		

Multiple Sclerosis <u>Repair</u> No FDA Approved Drug that Improves Function

- MS is an autoimmune disease where the immune system attacks myelin in the central nervous system, and over time this results in increasing disability
- Approved disease-modifying drugs modulate the immune system, which can reduce relapses and slow disability progression, but **none** repair damage
- NervGen's goal is to repair/remyelinate the damage from MS, thereby improving function

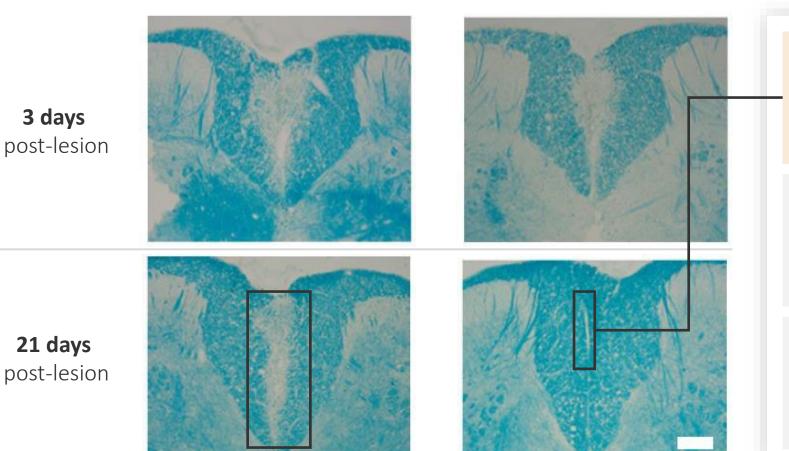
NVG-291 Restores Motor Function in Multiple Sclerosis

Representative of Placebo Group

Score never improves from 3.5

Representative of NVG-291 Group

Score improves to 0.5 in 20 days


NVG-291 restored motor function in MS model¹, even when administered after symptoms were fully developed

NVG-291 Remyelinates in Multiple Sclerosis

PLACEBO

NVG-291

Animals treated with NVG-291 had substantially greater remyelination compared to placebo treated animals after 21 days

POSITIVE

PRECLINICAL RESULTS¹

Histological evidence showed that the desired types of cells were migrating to the lesion, and that these cells were forming myelin

> Increased remyelination was accompanied by improvements in nerve conduction

Lesion size in LPC demyelination model

NVG-291 Safety/Efficacy Studies in Multiple Sclerosis Patients

World-class Advisory Board with experts in MS research, clinical design, and functional assessments

Jack Antel, MD McGill University	Ex-Pres., Americas Committee for Treatment and Research in MS; Ex- Pres., International Soc. of Neuroimmunology	Robert Naismith, MD Washington University	Expert in clinical trial design and clinical outcomes measures
Jeremy Chataway, MD University College London	Advanced Clinical trial design expert in MS	Anneke van der Walt, MD, PhD Monash University	Led several international studies on digit biomarkers in MS
Jeffrey Cohen, MD Cleveland Clinic Lerner College of Medicine	Ex-ACTRIMS President		

Share and Capital Structure

Exchange/Market: Ticker	TSX: NGEN.V	OTCQX: NGENF
Recent Share Price (November 15, 2022)	CA \$1.72	US \$1.30
Shares Outstanding	58.7 million	
Fully Diluted	76.5 million (~7.9 million options, ~9.9 million warrants)	
Insider Ownership	24.5%	
~Cash & Cash Equivalents (September 30, 2022)	CA \$27.7 million	US \$20.2 million

Upcoming Value Drivers

- Phase 1 study topline MAD data (2023)
- Phase 1b/2a trial planned in spinal cord injury (2023)
- Preclinical study results in chronic spinal cord injury and Alzheimer's disease models which could transform treatment paradigms
- Awarding of privately funded and US Department of Defense sponsored grants (2022/23)
- Uplisting to Nasdaq

Investment Highlights

NVG-291 has the potential to **redefine treatment paradigms** for neurological disorders

Improvement demonstrated across 6 different animal models in fine and gross motor control, sensory function, autonomic functions, visual acuity, memory & learning, in many cases **unprecedented**

Pipeline addresses **significant unmet medical needs** in spinal cord injury, multiple sclerosis and Alzheimer's disease

Pipeline addresses very attractive commercial opportunities

Experienced management team, board & scientific advisors

Enabling the Nervous System to Repair Itself

@NervgenP

in NervGen Pharma Corp.

